Two-way deterministic multi-weak-counter machines

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulations of Quantum Turing Machines by Quantum Multi-Counter Machines

We define quantum multi-stack machines (abbr. QMSMs) by generalizing quantum pushdown automata (abbr. QPDAs) dealt with before from one-stack to multi-stack, and the well-formedness (abbr. W-F) conditions for characterizing the unitary evolution are presented. Afterwards, by means of QMSMs we define quantum multi-counter machines (abbr. QMCMs) that are somewhat different from the quantum counte...

متن کامل

Two-way Quantum One-counter Automata

After the rst treatments of quantum nite state automata by Moore and Crutch eld and by Kondacs and Watrous, a number of papers study the power of quantum nite state automata and their variants. This paper introduces a model of two-way quantum one-counter automata (2Q1CAs), combining the model of two-way quantum nite state automata (2QFAs) by Kondacs and Watrous and the model of one-way quantum ...

متن کامل

Deterministic one-way Turing machines with sublinear space bounds

Deterministic one-way Turing machines with sublinear space bounds are systematically studied. We distinguish among the notions of strong, weak, and restricted space bounds. The latter is motivated by the study of P automata. The space available on the work tape depends on the number of input symbols read so far, instead of the entire input. The class of functions space constructible by such mac...

متن کامل

Multi-way Interacting Regression via Factorization Machines

Modeling interactions Definition 1. Let S = {e1, . . . , eD} be a set of D objects (e.g. indices of variables) and Z = {Z1, . . . ,ZJ} set of J subsets of S: Zj ⊂ S, for j = 1, . . . , J . Then we say that G = (S,Z) is a hypergraph with D vertices and J hyperedges. Interactions form a hypergraph. Z incidence matrix of interactions: Z ∈ {0, 1}D×J , where Zi1j = Zi2j = 1 iff i1 and i2 are part of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 1982

ISSN: 0304-3975

DOI: 10.1016/0304-3975(82)90086-x